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Two distinct time scales in the dynamics of a dense hard-sphere liquid
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The dynamic behavior of a dense hard-sphere liquid is studied by numerically integrating a
set of Langevin equations that incorporate a free energy functional of the Ramakrishnan-Yussouff
form. At relatively low densities, the system remains, during the time scale of our simulation, in
the neighborhood of the metastable local minimum of the free energy that represents a uniform
liquid. At higher densities, the system is found to fluctuate near the uniform liquid minimum
for a characteristic period of time before making a transition to an inhomogeneous minimum of
the free energy. The time that the system spends in the vicinity of the liquid minimum before
making a transition to another one defines a new time scale of the dynamics. This time scale is
found to decrease sharply as the density is increased above a characteristic value. Implications of
these observations on the interpretation of experimental and numerical data on the dynamics of
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supercooled liquids are discussed.

PACS number(s): 64.70.Pf, 61.20.Lc

I. INTRODUCTION

The dynamic behavior of dense supercooled liquids has
been the subject of extensive experimental, theoretical,
and numerical studies [1,2] over several decades. How-
ever, the present understanding of some of the observed
phenomena remains far from complete. In recent years,
considerable progress has been achieved through the de-
velopment of mode coupling (MC) theories [3] of the dy-
namics of dense liquids. MC theories provide a detailed
and qualitatively correct description of the observed dy-
namics [4] in a temperature range that covers the first
few decades of the growth of the characteristic relaxation
time T of so-called “fragile” liquids [2] in the supercooled
regime. In conventional MC theories [5,6], 7 is predicted
to exhibit a power-law divergence at an ideal glass tran-
sition temperature T.

Experimental and numerical results for the first few
decades of the growth of 7 are consistent with this pre-
diction. Numerical studies of the long-time dynamics of
simple one-component liquids at temperatures close to or
lower than T, are difficult because nucleation [7] of the
crystalline solid takes place if the simulation is continued
for a long time at such temperatures. In laboratory ex-
periments, on the other hand, many liquids can be main-
tained in the supercooled state for long periods of time
at temperatures which are substantially lower than the
temperature T, obtained from power-law fits to experi-
mental data at higher temperatures. Such experiments
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show that the predictions of conventional MC theories do
not provide a correct description of the actual dynamic
behavior for temperatures close to or lower than T.. The
system is very much in the liquid state at this temper-
ture (relaxation times are typically of the order of 10~8
s and viscosities are of the order of 102 P at T.) and
the growth of 7 as the temperature is lowered further is
described reasonably well by the Vogel-Fulcher law [8].
Thus a temperature that is slightly higher than the T,
obtained from power-law fits to the data for higher tem-
peratures may be called a crossover temperature, which
separates two distinct regimes of the dynamic behavior
of fragile liquids. These two regimes are characterized
by different temperature dependences of the relaxation
times.

A number of other experiments [9,10] also suggest the
existence of a crossover between two qualitatively dif-
ferent dynamical regimes at a temperature close to 7.
Recent versions of MC theories [11-13] have established
the existence of cutoff mechanisms which eliminate the
divergence at T, predicted earlier. However, these calcu-
lations do not lead to definite predictions about the be-
havior to be expected for temperatures lower than T.. It
is generally believed that “activated processes” play an
important role in the dynamics at these temperatures.
However, the nature of these “activated processes” has
not been elucidated so far. There have been several at-
tempts [14-16] to describe the behavior observed at tem-
peratures lower than 7, in terms of a thermodynamic
glass transition which would take place at a temperature
T, lower than T if thermodynamic equilibrium could be
maintained all the way down to this temperature. How-
ever, a calculation that establishes the existence of such
a transition in a physically realistic system is not yet
available.
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We address here some of the questions mentioned
above by means of a numerical simulation of the dy-
namics of a dense hard-sphere liquid. Our simulation
involves explicit numerical integration of the dynamics
of the fluid as described by a set of Langevin equations
(17,18] in which information about the equilibrium struc-
ture of the liquid is incorporated in the form of a mean
field free energy functional of the Ramakrishnan- Yussouff
form [19]. This free energy functional is known [20,21] to
possess, at sufficiently high densities, many “glassy” local
minima in addition to the ones representing the uniform
liquid and crystalline solid states. The dynamics of this
system at relatively low values of the density within the
“supercooled” regime was simulated in an earlier study
[17,18]. It was found there that at such densities the sys-
tem remains confined to the neighborhood of the liquid
minimum of the mean field free energy during the time
scale of our simulation. This time scale was much longer
than the relaxation times associated with the decay of
small-amplitude density fluctuations near the liquid min-
imum. The nature of the growth of the longest relaxation
time with increasing density and the form of the decay
of density correlation functions in time were found to be
in qualitative agreement with the predictions of MC the-
ories.

In the present study, we have considered higher densi-
ties and monitored the time evolution of the system over
longer times. In particular, we have addressed the follow-
ing question: under what conditions and over what time
scales does the system make a transition from the neigh-
borhood of the uniform liquid minimum to one of the
many other inhomogeneous minima of the free energy?
In our simulations, the system is started off in a state
which is close to the liquid minimum and its evolution in
time is followed by integrating the equations of motion
forward in time. As explained in more detail in Sec. II,
at regular intervals along the simulated time evolution of
the system we use a deterministic free energy minimiza-
tion procedure [20,21] to locate the free energy minimum
that lies closest in phase space to the state of the system
at the current point on its trajectory. This allows us to
monitor the free energy minima near which the system
fluctuates at different points along its trajectory.

For a hard-sphere system, the density rather than the
temperature is the relevant control variable: one must
consider increased densities rather than lower temper-
atures. At relatively low densities (n* < 0.95, where
the dimensionless density parameter n* is defined as
n* = poo3, with po being the average number density
of the system and o the hard-sphere diameter), we find
that the system remains in the vicinity of the liquid min-
imum during the very long time scale of our simulation.
A qualitatively different behavior is found at higher den-
sities (n* > 0.96). At these densities, we find that after
spending an initial period of time (which decreases as
the density is increased) near the liquid minimum, the
system makes a transition to one of the inhomogeneous
minima of the free energy. These inhomogeneous min-
ima are characterized by a strong clumping of the local
density at a small number of points.

We have found a convenient way to define, as discussed

3917

in Sec. II, a characteristic time 7/(n*) to describe the
time scale associated with the transition of the system
from the uniform liquid minimum to one of the nonuni-
form minima of the free energy. This transition is sig-
naled in our simulation by a zero crossing of the excess
free energy, defined as the difference between the current
value of the free energy and its value at the uniform liquid
minimum. The time 7/(n*) is found to increase sharply as
n* approaches the value n* = 0.95 from above. It exceeds
the longest time scale of our simulation for n* < 0.954.
The dependence of 7’ on the density is the main result
of our simulation.

The time scales that describe the relaxation of small-
amplitude density fluctuations near the liquid minimum
were calculated in our previous simulation [17,18] for
n* < 0.93. The dependence of 7, the longest one of
these time scales, on the density in this regime was found
to be well described by the Vogel-Fulcher law (and also
by a power law at lower densities). We find that the
time scale 7’ calculated in the present simulation be-
comes shorter than the extrapolated value of 7 as the
density is increased above n* ~ 0.98. These results im-
ply the existence of a crossover density n’ in the range
0.95 < n} < 0.96 at which the time scale 7’ apparently
diverges or at least becomes orders of magnitude larger
than the time scales accessible in our simulation. For den-
sities lower than n}, a system prepared in a state close to
the liquid minimum remains in its vicinity over the time
scale of observation, so that a description of its dynamics
in terms of small fluctuations about the uniform liquid
minimum is adequate. For values of n* higher than n?,
the inhomogeneous local minima of the free energy have
to be taken into account in a proper description of the
dynamics.

The model and methods used in our simulation are
not adequate for dealing with the strong density inhomo-
geneities present near the nonuniform minima of the free
energy. For this reason, we have not been able to simulate
the long-time dynamics of the system at densities higher
than n}. However, we have carried out a detailed investi-
gation of the nature of the density distribution at the free
energy minima to which the system makes transitions at
densities higher than n}. These minima are found to ex-
hibit some of the characteristics of very disordered fcc
crystals, but certain characteristic features expected for
random close packing also appear to be present. For
a system of finite size, a sufficiently defective crystal is
effectively indistinguishable from a glass. If these config-
urations are identified as crystalline states with defects,
then 7/ would be essentially the same as the homogeneous
nucleation time of the crystalline solid. The dynamics of
homogeneous nucleation of the crystalline solid in a su-
percooled liquid has been studied extensively by molecu-
lar dynamics (MD) simulations [7]. Our calculation dif-
fers from these MD simulations in one important aspect.
The onset of homogeneous nucleation is detected in MD
simulations by looking for its signature in measured ther-
modynamic quantities. These signatures may be difficult
to detect in some cases. In contrast, since we deal with
a free energy functional which exhibits a well-defined lo-
cal minimum representing the uniform liquid state, any
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transition away from it can be monitored directly in our
simulation. An interpretation of our observations as tran-
sitions to an imperfect crystalline state as the density is
increased above a characteristic value would be in quali-
tative agreement with the results of MD simulations [22]
of the hard-sphere system.

However, an alternative interpretation in which the
minima to which the system makes transitions for n* >
n} are identified to represent glassy states is also com-
patible with our data. Even if this interpretation is not
appropriate for the hard-sphere liquid, it is likely to be
so in other so-called good glass-forming liquids for which
the time scale for nucleation of the crystalline solid can
be very long. As discussed in Sec. III, the results of our
simulation suggest an explanation of the experimentally
observed crossover in the dynamic behavior of such lig-
uids near the ideal glass transition temperature of MC
theories in terms of a transition to glassy minima of the
appropriate free energy functional.

The remaining part of this paper is organized as fol-
lows. Section II contains a brief description of the
Langevin equations considered in this work, the numer-
ical method used for integrating them forward in time,
and a detailed description of the results obtained from
these simulations. In Sec. III, we summarize the main
conclusions drawn from this study, compare our results
with those obtained from MD simulations of the dynam-
ics of dense hard-sphere liquids, and discuss the implica-
tions of our observations on the interpretation of exper-
imental and numerical data on the dynamics of super-
cooled liquids.

II. MODEL, METHODS, AND RESULTS

As we have mentioned in the preceding section, we
study in this paper a Langevin equation model for the
dynamics of a hard-sphere liquid. It is precisely the same
as the model studied in Ref. [18]. We will therefore give
here only an outline and will refer the reader to Ref. [18]
for details.

We introduce first the statics, which in this case takes
on particular importance. The equilibrium properties of
the system are described by a free energy functional of the
two fields in the problem: the number density field p(r, t)
and the current density field g(r,t). This free energy
functional is the sum of two terms

Fuulp.8) = (mo/2) [arBOE L p, )

where my is the mass of a hard-sphere particle and F[p]
is of the Ramakrishnan-Yussouff [19] (RY) form

Flp| = Falpo) + T / dr{p(r) Infp(r)/ po] — 6p(x)}

—g / dr / dr'C(|r — ¥')ép(r)p(r’).  (2)

In Eq. (2) F, is the free energy of the uniform lig-
uid of density po which is equal to the average density
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studied, T' is the temperature (the Boltzmann constant
is set to unity), dp(r) = p(r) — po is the deviation of the
local density from its average value, and C(|r —r'|) is the
Ornstein-Zernike direct correlation function of the liquid
of density po. If one expands the logarithm in Eq. (2)
to second order in the density fluctuations, one obtains
after standard manipulations the usual expression relat-
ing the direct correlation function to the static structure
factor S(q). For C(r) we use the standard Percus-Yevick
form [23] for hard spheres.

It is convenient to introduce appropriate dimensionless
variables at this point. As in Ref. [18], we take the com-
putational lattice constant h as the unit of length, which
is later related to the hard-sphere diameter o. For the
unit of time we take

tO = h/C, (3)
where c is the speed of sound
2 1

? = . (4)
mopok

The compressibility  is related to S(q) by Tpox = S(g =
0). The time to is [18] of order of the characteristic
phonon time for wave vectors of order 1/0 and it is re-
lated to the Enskog collision time tg by

ty' = 4t/ ?n*g(0) K% (h/o)ty (5)
where n* = poo3, g(o) is the pair-correlation function at
contact for hard spheres [24], and

T

K = 5
mocC

(6)

If one then introduces the dimensionless variables

x =r/h, (7)
n= phBa (8)
j = gh‘s/c? (9)

then one has, for the free energy in units of mgcZ,

Findl = (1/2) [ dxli)/no+ Flnl, (10
where
F[n] = Fo[no] + K/dx{n(x) In[n(x)/no] — én(x)}

*% /dx/dx'cqx-x'|)5n(x)5n(x'). (11)

The quantity K defined in Eq. (6) is a function of the
density only.

We proceed now with the dynamics. The Langevin
equations are derived in the standard way [18,11,25] by
taking n(x,t) (note that henceforward t is the dimen-
sionless time) and j(x,t) to be the slow hydrodynamic
variables, then computing the required Poisson brackets
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with the functional derivatives of the free energy defined
in Egs. (10) and (11), and finally adding the appropriate
dissipative terms. The equations thus obtained for the
dynamics of our model are

on(x,t)

o)+ (1/70) W - (ni) = 0, (12)

93i
8]t = —nV —_— - l/no)ZV (7:35)

—(1/"'0)2-71 idj + (1/n0)nV?j; + ©i(x, 1),

(13)

where 7 is the dimensionless shear viscosity which can
[18] be expressed in terms of the density. The noise fields
©O(x, t) satisfy the second fluctuation dissipation theorem

(©i(x,t)0;(x',t')) = —2K Ano6; ;V26(x — x')é(t — t')
(14)

and the quantity A is a dimensionless measure of the
strength of the equilibrium fluctuations.

The details of the derivation of these dynamical equa-
tions and a thorough discussion of the assumptions that
go into the model [including the form of the first term
in Eq. (10)] are given in Ref. [18]. We emphasize that
we use here not only the same model as in Ref. [18], but
also the same values of the parameters in the problem
which, in addition to the average dimensionless density
n*, are only h/o and A. In particular, the value of h/o
(h/o = 1/4.6) is chosen so that the wave number at the
first peak of the static structure factor S(q) of the liquid
lies in the middle part of the first Brillouin zone of the
computational lattice. We also use the same numerical
methods and the same cubic lattice with N3 sites and
N = 15 to integrate the equations of motion, Egs. (12)
and (13), and to generate the noise fields in Eq. (14).
Thus the results obtained here are directly comparable
with those in Ref. [18].

The dynamics of this system at densities n* < 0.93
was extensively studied in Refs. [17,18]. We review now
some of the results which are relevant for the present
work. In the density range mentioned above, we found
that, after an initial transient behavior that depended
somewhat on the initial conditions (results reported in
Refs. [17,18] and here are for initial conditions where the
density is uniform and the currents vanish), the system
became stationary in that the time-dependent density-
density correlation function (or its spatial Fourier trans-
form, the dynamic structure factor) S(r —r',¢,,¢t; +¢) =
(on(r,t1)on(r’',t; +t)) became independent of ¢;, except
for random fluctuations. The mean field free energy of
the system as calculated from Eq. (11) also became sta-
tionary, fluctuating around the liquid value. It was then
possible to calculate the equilibrium dynamic structure
factor S(q,t). The decay of these density correlations
took a simple exponential form at low densities, but for
densities higher than n* = 0.83 (the density at which

3919

the RY free energy exhibits [20] a crystallization transi-
tion) we obtained, for wave vector values near the peaks
of the static structure factor, decay behavior in quali-
tative agreement with that predicted by MC theories.
At a given density, the largest characteristic decay time
(that is, at the most slowly decaying wave vector), which
we denote here by 7, was found to obey a Vogel-Fulcher
law [8] which takes the following form when the density,
rather than the temperature, is the externally controlled
variable:

T(n*) = AeB/(v—ve), (15)

where v = 1/n* and v. = 0.81, corresponding to a density
n; = 1.23. The values of 7 as given from Eq. (15) and
with the parameter values found in Ref. [18] are plotted
in Fig. 1 extrapolated to the higher density range studied
in this paper.

As the density is increased beyond n* = 0.93 in the
present work, there is a qualitative change. Instead of
locally equilibrating after a relatively brief transient, we
find that the system does not seem to reach a steady
state, but rather that the mean field free energy drifts
slowly. As the density is increased further, it becomes
clear that the mean field free energy is slowly drifting to
a value below that of the liquid minimum, that is, the
quantity 0F defined as [see Eq. (11)]

8F = F[n] — Fo[no] (16)
becomes negative. If the numerical computation is car-
ried out much beyond this point, large density fluctua-
tions begin to occur. Thus we see that the system is
crossing over to an inhomogeneous state characterized by
strong density inhomogeneities. These reflect, of course,
the incipient formation of a solid.

It is not possible to follow the further evolution of the
system through the dynamical equations. First, the time
scales involved become extremely long. Second, the pres-
ence of large scale density fluctuations introduces numeri-
cal instabilities in the solution, which reflect the fact that
the basic assumptions of the fluid dynamical model no
longer apply when the fluctuations are so large and the
system no longer liquidlike. Therefore, a different strat-
egy is needed to extract the information on the charac-
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FIG. 1. The characteristic times 7 (dashed curve) and 7’
(symbols) defined in the text as a function of density.
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teristic time, which we call 7/, for this crossover.

The strategy that we employ is the following. We use
uniform boundary conditions and numerically integrate
the dynamic equations (12) and (13). We monitor several
quantities as a function of time, namely, the equal time
current correlations, the maximum local density, and the
mean field free energy §F [see Eq. (16)]. After an ini-
tial transient, we find that the current correlations set-
tle at their equilibrium value as given by the equiparti-
tion theorem. The maximum local density and the mean
field free energy vary very slowly. The former increases
with time, while d F, which after the initial transient is
a small positive quantity, shows a slow tendency to drift
downward. Eventually this trend accelerates, the max-
imum density markedly increases, and, simultaneously,
the mean field § F crosses zero. We define 7/ as the time
at which this occurs. Subsequently, 6 F becomes nega-
tive and the maximum local density begins to increase
sharply, as explained above.

The values of 7/ obtained in this fashion vary from run
to run, but only slightly. The average value as a function
of density is plotted in Fig. 1. One clearly sees that 7’
decreases very sharply with increasing density, until it
becomes approximately independent of n* beyond n* =~
1. Since 7, on the other hand, increases with density, the
curves for 7 and 7’ cross, at a density n* =~ 0.98. The
main feature is the sharp change in 7’ which takes place
as the density approaches the crossover value n} =~ 0.95.

The evolution of the system beyond time 7' can be
inferred in the following way. We use the final state con-
figuration at time 7/, as obtained from the dynamical
simulation, as the input in a minimization routine that
finds the free energy minimum that is closest in phase
space to the initial configuration. We then examine the
nature of the distribution of the local density in this free
energy minimum. If the minimization procedure is ap-
plied to configurations obtained when é F is still positive,
the flow is invariably to the uniform liquid minimum. In
contrast, the minima to which configurations obtained
after 6F has become negative converge are found to be
highly inhomogeneous, with the density concentrated at
only a few points.

We have calculated several quantities which character-
ize the nature of the density distribution at these minima.
One of these quantities is a two-point density correlation
function u(r). The function u(r) for a particular mini-
mum reached by the system, characterized by the values
{n;} of the dimensionless density variables at the points

{1}, is defined as
Zninjfij
1 i>j

u(r) = (nav)? Zf,‘j ’

i>j

(17)

where n,, is the average value of n; and f;;(r) = 1 if the
separation between the mesh points ¢ and j of the com-
putational lattice lies between 7 and r + Ar and f;; = 0,
otherwise. This function describes spatial correlations of
the time-averaged local density at a local minimum of the
free energy. It is different from the more familiar pair dis-
tribution function g(r), which describes equal-time cor-
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relations of the instantaneous local density. The function
u(r) is equal to 1 for all r in the uniform liquid minimum.
In an inhomogeneous minimum it is not strictly equal to
zero for all 7 < o because the average density near a
point where a particle is localized in such a minimum is
smeared out over a region of width ~ 0.30. Results for
u(r), averaged over five inhomogeneous minima obtained
for n* = 0.96, are shown in Fig. 2. The value of Ar used
is 0.10. The results in Fig. 2 certainly do not correspond
to a liquid. The r dependence of u(r) for r < 2.5¢ (infor-
mation about larger distances is less reliable for our sam-
ple size) looks very similar to that of the pair-distribution
function of the “slowly quenched” glassy states found in
MD simulations [22] of the hard-sphere system. There
appear to be significant differences between the form of
u(r) and that of the pair-distribution function g(r) of the
imperfect crystalline state obtained via nucleation from
the liquid state in MD simulations [22]. In particular,
g(r) of the nucleated crystal exhibits a pronounced peak
at 7 =~ 1.60, which is just barely present in our data for
u(r). Also, the heights of the peaks of u(r) near r =~ 1.9¢
and r = 2.30 appear to be smaller than the heights of
the corresponding peaks of g(r) for the nucleated crys-
talline state. However, these qualitative differences may
very well arise due to differences in sample size, bound-
ary conditions, etc. and in the absence of reliable data
on the form of u(r) for larger values of r, it is difficult to
decide from this information alone whether the inhomo-
geneous minima obtained in our simulation are glassy or
crystalline with defects.

Therefore, to investigate further the nature of the lo-
cal arrangement of the particles in the inhomogeneous
minima, we have calculated the bond-orientational “or-
der parameters” Q; and W}, introduced by Steinhardt et
al. [26]. These quantities are defined for our system in
the following way. The mesh points at which the den-
sity is peaked in an inhomogeneous minimum of the free
energy represent the locations of the hard-sphere parti-
cles. Two such particles are considered to be neighbors
if the separation between the corresponding mesh points
is less than 1.40, the approximate value of r at the first

5 i —
n =096 |
.
5
2 i
|
O . e . - e R |
0.5 1 15 2 2.5

r'c

FIG. 2. The function u(r) (see text) averaged over five free
energy minima obtained at n* = 0.96.
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minimum of u(r). Let R; denote the location of such
a particle and let #%(R;) and ¢“(R;) be the polar and
azimuthal angles which specify the orientation of a unit
vector pointing from this particle to its ath neighbor.
Following Ref. [27], we then define a quantity Q. (R;)
for this particle as

Qum(R) = - T Vim(°(RD), 4°(R:)),  (18)

where m; is the number of neighbors of this particle and
Yim(0, @) is a spherical harmonic. The order parameters
Qi(R;) and W;(R;) are defined as rotationally invariant
combinations of the Qim (R;)’s:

! 1/2
anass(ﬁﬁg;ngthnaF) (19)

and
1
Wi(R:) = 3/2
P 1 1
x mzm (m1 mo m3)
X Jml +mg+ms,0 lel (R't') lez (R‘) les (R‘)’
(20)

where ( bt ) is a Wigner 3j symbol. As pointed

m; M3z ms
out by several authors [26,27], the values of @Q;(R;) and
Wi(R;) for I = 4 and 6 provide useful information about
the symmetry of the local arrangement of particles sur-
rounding the one at R;. In particular, the values of Q,,
Qs, W4, and W are (0.19, 0.57, - 0.16, — 0.013), (0.036,
0.51, 0.16, 0.013), (0.097, 0.48, 0.13, — 0.012), and (0,
0.66, 0, — 0.17) for fcc, bee, hep, and icosahedral clus-
ters, respectively. The results for Q4 and Qg, obtained
for the inhomogeneous local minima found in our simu-
lation, are consistent with local fcc order. In particular,
the distribution of Q4(R;) peaks near 0.21, which is also
the average value of Q4(R;). This value is close to what
is expected for a cluster with fcc symmetry. The distri-
bution of Q¢(R;) peaks near 0.43 and its average value
is close to 0.46. Since all close-packed structures (fcc,
bce, hep, and icosahedral) have large values of Qs, it
is not possible to draw any conclusion about the nature
of the local bond-orientational order from this observa-
tion. The distributions of W4(R;) and Wg(R;), obtained
for five local minima at density n* = 0.96, are shown
in Figs. 3 and 4, respectively. The distribution of W,
shows significant weight in the region near — 0.14, close
to the value (- 0.16) expected for a fcc cluster. However,
the distribution is fairly wide and the average value of W,
(= - 0.026) is rather different from the fcc value. The dis-
tribution of Wg(R;) exhibits a peak in the neighborhood
of the value (- 0.013) expected for a fcc cluster, but has
significant weight at negative values with a larger mag-
nitude, indicating the presence of a substantial amount
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FIG. 3. The distribution of the quantity W,(R.:) (see text)
averaged over five free energy minima obtained at n* = 0.96.

of local icosahedral order, which is expected [26] in a
random close-packed arrangement of hard spheres. The
distribution shown in Fig. 4 is qualitatively similar to
the distribution of Wg(R;) obtained in MD simulations
[27] of glassy states of a Lennard-Jones system.

To summarize, our investigation of the nature of the
arrangement of the local density in the inhomogeneous
minima reached by the system after it makes a transi-
tion away from the uniform liquid minimum shows that
these minima exhibit a number of features characteristic
of a fcc solid. At the same time, some of the features ex-
pected for a random close-packed structure also appear
to be present. Of course, there is no meaningful differ-
ence between the short-range correlations of a glass and
those in a very disordered crystal, so that the question of
whether our finite-size system is glassy or a very defective
crystal is not really well posed.

0.15 ;
[
i ) n =0.96
9] L %
*'—LEJ 0.1 % 7
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FIG. 4. The distribution of the quantity Wes(R.) (see text)
averaged over five free energy minima obtained at n* = 0.96.
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III. SUMMARY AND DISCUSSION

We first summarize the main results of this study. It
is important to recall that for hard spheres the density,
rather than the temperature, is the control parameter.
From direct numerical integration of a set of Langevin
equations which describe the fluctuating hydrodynamics
of a dense hard-sphere liquid, we have found a character-
istic time scale 7/(n*), which corresponds to the amount
of time a system, initially prepared in a state close to the
uniform liquid minimum of the free energy, spends in the
vicinity of this minimum before making a transition to
one of the many inhomogeneous local minima of the free
energy. This time scale is found to decrease sharply as
the dimensionless density n* is increased above a char-
acteristic value n} ~ 0.95 and it exceeds the time scale
of our longest simulation for lower values of n*. The free
energy minima to which the system makes transitions
for n* > n} exhibit, for our finite-size sample, charac-
teristic features expected for both crystalline and glassy
states. For this reason, we have not been able to deter-
mine unambiguously whether they represent crystalline
or amorphous states. This, however, is a moot point be-
cause there is no meaningful distinction between a finite
crystal with many defects and an amorphous solid with
short-range crystalline order.

The results described above are in qualitative agree-
ment with those obtained from MD simulations [22] of
the hard-sphere liquid. These simulations show that the
hard-sphere system cannot be locally equilibrated in the
supercooled liquid state if the density n* exceeds a “crit-
ical value” n} ~ 1.08. If the liquid is allowed to evolve
in time at a density equal to or higher than n}, then it
spontaneously freezes into an imperfect fcc solid during
the time scale of the simulation. If, on the other hand,
the system is rapidly compressed from the liquid state
at a density lower than n} to a density close to the ran-
dom close packing density (n* ~ 1.23), then it ends up
in an amorphous state. The degree of “glassiness” of this
amorphous state increases with the rapidity of the pro-
cess of compression. These results look similar to the
behavior observed in our simulation if we identify the
crossover density n} obtained from our simulation with
the critical density n} found in the MD simulation. The
value of n} obtained from our simulation (n} ~ 0.95) is
somewhat different from the result (n} ~ 1.08) of MD
simulations. This difference probably arises due to the
fact that the value of n* at which the discretized ver-
sion of the Ramakrishnan-Yussouff free energy functional
used in our calculation exhibits a thermodynamic crys-
tallization transition (n} ~ 0.83) [20,21] is substantially
lower than the crystallization density obtained in MD
simulations (n} ~ 0.943) [22]. The value of the ratio
nk/ n} ~1.14 obtained in our simulation is, in fact, quite
close to the value of nj/n} (= 1.15) obtained in the MD
simulation.

The fact that in MD simulations carried out at den-
sities equal to or greater than n} the liquid is able to
freeze into a state which is close to the crystalline one
indicates that the free-energy minima which represent
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near-crystalline states must be fairly easy to reach. Oth-
erwise, the system would not be able to bypass the large
number of glassy minima whose presence is indicated by
the fact that the system does get trapped into one of
them if it is compressed rapidly. The same is probably
true in our simulation, although we cannot rule out the
possibility that the free energy minima into which the
system makes a transition after leaving the vicinity of
the liquid minimum represent amorphous states rather
than imperfect crystalline ones. There are other simple
model systems [7] which, according to MD simulations
results, exhibit nucleation of the crystalline phase at suf-
ficiently high degrees of supercooling. This suggests that
a similar picture is valid for these models too.

The dynamics of these systems in the supercooled
regime can then be expected to exhibit the following
general behavior: For densities lower than the crossover
density n} (alternatively, for temperatures higher than a
crossover temperature T, when the temperature T is the
control parameter), the system remains in the vicinity of
the uniform liquid minimum during the time scale of ob-
servation. The dynamics in this regime is therefore gov-
erned by small fluctuations about the liquid minimum.
Nonlinear interactions of these density fluctuations lead
to a growth of the relaxation time as the density is in-
creased (temperature is decreased). MC theories are be-
lieved to provide a good description of the nonlinear feed-
back mechanism that causes this growth of the relaxation
time. Therefore, the dynamic behavior of the system in
this regime is presumably well described by MC theories.
As the density is increased above n’ (the temperature
is decreased below T,), the system undergoes a transi-
tion from the liquid minimum to a near-crystalline one
within the time scale of observation and remains in its
vicinity for all later times. Typically, the value of n}
(T:) is found to be lower (higher) than that of n} (T.)
extracted from power-law fits to the data at lower den-
sities (higher temperatures). For example, the value of
n} obtained from MD simulations [22] of the hard-sphere
liquid is close to 1.08, whereas power-law fits to the MD
data [28] for the diffusion constant [29] and our own data
[17,18] for the relaxation time yield values of n! in the
range 1.10-1.15. Thus questions about a crossover near
n} (T.) do not arise in these systems and the dynam-
ics over the entire accessible supercooled regime is well
described by MC theories. All existing simulation data,
including our own, on these systems are consistent with
this scenario.

There are, however, many cases to which this simple
scenario is not applicable. Many model systems, such as
two-component mixtures with spherically symmetric in-
teractions [30-32], do not show any sign of crystallization
during the time scale of MD simulations. There is also
a large number of experimentally studied systems (so-
called good glass-forming liquids [4]) which can be main-
tained in the liquid state for long times at high degrees
of supercooling without the occurrence of crystallization.
We close with a discussion of the implications of the re-
sults obtained in our simulation on the interpretation of
the observed dynamic behavior of such systems.

As T is lowered below the equilibrium freezing tem-
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perature Ty, the appropriate free energy functional de-
scribing the system is expected to develop a large num-
ber of inhomogeneous local minima. Some of these min-
ima have crystalline or near-crystalline structures and
the others are amorphous. At temperatures well below
Ty, all of these minima are expected to have free ener-
gies lower than that of the uniform liquid minimum. The
conventional mean field description of metastability sug-
gests that the typical height V' of the free-energy barriers
which separate the liquid minimum from these inhomo-
geneous minima should decrease as the temperature is
lowered.

Further, there exists a large amount of experimen-
tal data (summarized in Ref. [2]) which suggest that
the dynamics of the liquid at temperatures close to and
lower than T, is dominated by processes associated with
the exploration of a large part of the full phase space
(excluding the regions near the equilibrium crystalline
states). These observations suggest that the time scale
7' in these systems becomes comparable to typical exper-
imental time scales at a temperature T, which is higher
than T,.. If this is so, then the following scenario is ex-
pected for the dynamics of the system in the supercooled
regions. For temperatures higher than 7., a system ini-
tially prepared in the liquid state remains in the vicinity
of the liquid minimum for long times and its dynamic
behavior is well described by MC theories. Since temper-
atures higher than T, are substantially higher than T,
the temperature dependence of the relaxation time in this
regime would follow the power-law form predicted in the
original version of MC theories. We believe that all tem-
peratures at which a liquid can be equilibrated within the
time scale accessible in MD simulations lie in this regime.
This would explain the observed agreement between the
results obtained from MD simulations [30,31,33] and the
predictions of MC theories. The growth of relaxation
times in this regime is a purely kinetic phenomenon, not
related to or caused by the growth of any spatial correla-
tion. This is consistent with two recent numerical studies
[32,34] which looked for a growing correlation length in
this regime and did not find any evidence for its existence.

The dynamic behavior for temperatures lower than T,
would be qualitatively different. At these temperatures,
the system would make a transition from the liquid min-
imum to one of the inhomogeneous minima of the free
energy during the time scale of observation. In good
glass-forming liquids, these inhomogeneous minima are
much more likely to be glassy than crystalline. Since
these free energy minima are expected to have lower free
energies than that of the uniform liquid minimum at tem-
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peratures lower than T, the liquid minimum would not
play any significant role in the dynamics at later times.

Not much information is available about the typical
height of the free-energy barriers which separate differ-
ent glassy minima of the free energy. Approximate cal-
culations [35] and the experimental observation that the
system behaves like a liquid over a substantial range of
temperatures below T, suggest that these barrier heights
remain finite in the thermodynamic limit at these tem-
peratures. The system would then visit many such min-
ima during its evolution over a long time. It would there-
fore behave like a liquid over such time scales, in the
sense that the time-averaged local density would be uni-
form. However, the dynamics of the system would be
very different in this regime because the decay of density
fluctuations will be determined primarily by activated
transitions among various glassy local minima of the free
energy. Thus the presence of a crossover in the dynamic
behavior of the system near a temperature T, which is
higher than the temperature 7, obtained from power-law
fits to the data obtained at higher temperatures, would
follow naturally in this scenario. The dynamics of the
system at temperatures lower than T, would have many
similarities with that of quenched random systems such
as spin glasses, which are known [36] to exhibit a large
number of local minima of the free energy at low tem-
peratures. In particular, the suggestion [14-16] that a
true thermodynamic phase transition would take place
at a lower temperature T, if thermodynamic equilibrium
could be maintained all the way down to this tempera-
ture would become a distinct possibility in this scenario.

In the absence of any direct corroborative evidence,
this description of the dynamics of good glass-forming
liquids in the supercooled region remains essentially spec-
ulative. It would be very interesting to look for evidence
for or against this scenario in experiments and simula-
tions.
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